

rednex

Scaling application security at Google
The largest web application ecosystem in the world:
● 1,376 distinct user-facing applications on 602 *.google.com subdomains
● Thousands of internal apps, hundreds of acquired companies

… built using a wide variety of technologies:
● 4 major server-side languages: Java, C++, Python, Go
● 16+ HTML template system engines, dozens of HTML sanitizers
● JS & TypeScript with many frameworks: Angular, Polymer, Closure, GWT
● Over 2 billion lines of code, thousands of third-party libraries

… receiving thousands of web security vulnerability reports each year.

http://delivery.acm.org/10.1145/2860000/2854146/p78-potvin.pdf

The web then:
“We should work toward a universal linked information system, in which generality
and portability are more important than fancy graphics techniques and complex
extra facilities. (...) The aim would be to allow a place to be found for any
information or reference which one felt was important, and a way of finding it
afterwards. The result should be sufficiently attractive to use that it the information
contained would grow past a critical threshold, so that the usefulness the scheme
would in turn encourage its increased use.”

- Tim Berners-Lee, March 1989

The web now:
Millions of applications, billions of users, trillions in market cap, zettabytes of data

https://www.w3.org/History/1989/proposal.html

ap·pli·ca·tion plat·form
/ˌapləˈkāSH(ə)n ˈplatfôrm/
a framework of services that application programs rely on for standard operations

web plat·form
/web ˈplatfôrm/
the set of features implemented in a web browser used by developers to create
web applications, e.g. HTML, CSS, JavaScript, network & storage APIs, etc

web bug
/web bəɡ/
a vulnerability which allows the disclosure or modification of data in a web
application, exploitable against a logged-in user

1. The insecurity of web application code
aka Why it's so hard for developers to write secure webapps

2. The quagmire of legacy web features
aka The problems with the web's current security boundaries

3. The dangerous land of new web APIs
aka A few notes on eternal vigilance

The rest of this talk

@annevk @TanviHacks @fugueish @kneecaw
@johnwilander @kkotowicz @we1x @sirdarckcat
@empijei @mikispag @slekies @lcamtuf @_tsuro
@lukOlejnik @emschec @dveditz @frgx @sleevi_
@jmhodges @pdjstone @EdFelten @jruderman

Charlie Reis, Łukasz Anforowicz, Nika Layzell,
Christoph Kerschbaumer, Yutaka Hirano, Ryosuke
Niwa, Christoph Kern

Note: They may not like this talk. Except Mike.

An incomplete list of people whose ideas are featured in this talk

@mikewest

Part I
Insecurity of web application code

Total Google Vulnerability Reward Program payouts in 2018

XSS 35.6%

CSRF 3.2%

Clickjacking 4.2%

Other web bugs 7.8%

Non-web issues 49.1%

Mobile app vulnerabilities
Business logic (authorization)
Server / network misconfigurations
...

Source: @jvehent, Mozilla

Paid bounties by vulnerability type on Mozilla websites in 2016 and 2017

Co
un

t o
f V

ul
ne

ra
bi

lit
y

wsec-xs
s

wsec-applogic

wsec-disclosure

wsec-im
personatio

n

wsec-objre
f

wsec-in
jectio

n

wsec-appmisconfig

wsec-authentic
atio

n

wsec-re
dire

ct

wsec-oscmd

wsec-http
-header-in

ject

wsec-serve
rm

isconfig

wsec-sqli

wsec-authoriz
atio

n

wsec-crossdomain

wsec-csrf

https://twitter.com/jvehent/status/911192609699373056

HackerOne: Vulnerabilities by industry

Source: HackerOne report, 2018

Consumer
Goods

Financial services
& insurance Government Healthcare Media &

Entertainment Professional
services

Retail &
Ecommerce

Technology Telecom Transportation Travel &
Hospitality

Figure 5: Listed are the top 15 vulnerability types platform wide, and the percentage of vulnerabilities received per industry

Cross Site scripting (XSS)

Information disclosure

 Improper authentication

Violation of secure
design principles

Cross-site request
forgery (CSRF)

Open redirect

Privilege Escalation

Improper access control

Cryptographic issues

Denial of service

Business logic errors

Code injection

SQL injection

https://www.hackerone.com/sites/default/files/2018-07/The%20Hacker-Powered%20Security%20Report%202018.pdf

Source: HackerOne report, 2018

Consumer
Goods

Financial services &
insurance

Government Healthcare Media &
Entertainment

Cross Site scripting (XSS)

Information disclosure

 Improper authentication

Violation of secure
design principles

Cross-site request
forgery (CSRF)

Open redirect

23% 24% 26% 19% 28%

17%

7% 8% 3% 6% 9%

12% 10% 4% 8% 7%

18% 18% 16%25%

6% 9% 11% 10%10%

4% 6% 8% 7%5%

HackerOne: Vulnerabilities by industry

https://www.hackerone.com/sites/default/files/2018-07/The%20Hacker-Powered%20Security%20Report%202018.pdf

The three cardinal sins of the web as an application platform

Sin #1
Mixing code and data

A few completely safe code examples

response.write("<h1>Hello, " + name);

element.innerHTML = name;

homepage

window.location = user.homepage;

$('body').append(name)

response.write("Content-Type: text/csv")
response.write(user.dataExport)

A few completely safe code examples

response.write("<h1>Hello, " + name);

element.innerHTML = name;

homepage

window.location = user.homepage;

$('body').append(name)

<script>alert(1)</script>

javascript:alert(1)

javascript:alert(1)

...<script>alert(1)</script>response.write("Content-Type: text/csv")
response.write(user.dataExport)

 XSS

 XSS

 XSS

 XSS

 XSS

 XSS

Mixing code and data

Two major problems:

1. It's easy to introduce XSS during the most mundane web
development tasks: generating a part of the UI, creating
links, serving files with any user-controlled data.

2. XSS is web-level remote code execution, giving the
attacker full access to user data in the application.

Bugs: Cross-site scripting (XSS)

Sin #2
Unrestricted attack surface

A few completely safe code examples

<form action="/transfer">
 <input name="target" value="frgx" />
 <input name="amount" value="10" />

<button onclick="deleteAccount()">
 Delete account</button>

w("Content-Type: text/javascript")
w("var data = {'user':'${name}'}")

if search_result:
 log_to_db(search_query);
 return search_result

A few completely safe code examples

<form action="/transfer">
 <input name="target" value="frgx" />
 <input name="amount" value="10" />

<button onclick="deleteAccount()">
 Delete account</button>

w("Content-Type: text/javascript")
w("var data = {'user':'${name}'}")

if search_result:
 log_to_db(search_query);
 return search_result

<form action="//victim/transfer">
<input name="target" value="evil" />
<input name="amount" value="1000" />

<iframe src="//victim/settings"
 style="opacity: 0"></iframe>

<script src="//victim/json" />
<script>alert(data)</script>

<script>t=performance.now()</script>
<img src="//victim/search?q=secret"
 onerror="t2=performance.now()" />

 CSRF

 clickjacking

 XSSI

 XS-Search / timing

Unrestricted attack surface

Bugs: Cross-site request forgery (CSRF), cross-site script inclusion
(XSSI), clickjacking, cross-site search (XS-Search), timing attacks

The problem:

1. Every application endpoint is addressable via a URL.
2. Every request automatically attaches application cookies,

regardless of who sent the request.

The result: Lack of real isolation between applications.

Sin #3
Insecure transport layer

A few completely safe configuration examples

<VirtualHost *:80>
 DocumentRoot "/www/example"
 ServerName victim.example
</VirtualHost>

response.write("Set-Cookie: ID=" + id)

<plain>

A few completely safe configuration examples

<VirtualHost *:80>
 DocumentRoot "/www/example"
 ServerName victim.example
</VirtualHost>

response.write("Set-Cookie: ID=" + id)

<plain>

 No encryption

 Cookie sent over HTTP

Insecure transport layer

Bugs: MitM (sslstrip), mixed content / scripting

<plain>

The problem: For much of the web's existence hosting over
unencrypted HTTP has been the default configuration.

Note: We're ignoring problems with the CA ecosystem here.

Some other minor sins

➔ Unsafe defaults
➔ APIs that allow developers to shoot themselves in the foot
➔ Lack of defense-in-depth
➔ No application-wide security configuration

How have we managed to get away with this?

● Blaming the developer Developer education
○ OWASP Top 10

● Finding vulnerabilities before they get exploited by attackers
○ Code reviews, pentests, bug bounties

● Automated vulnerability scanning
○ Crawlers, web scanners, HTTP header checking tools

● Hardened layers of abstraction
○ Safe-by-default higher-level libraries
○ Compile-time restrictions, integration with developer tools

The lack of a central web authority facilitates and absolves inaction.

A glorious history of tacitly ignoring problems

A radical idea: What if we fixed this?

Fixes: Insecure transport layer

Learn from the Moar TLS project, Emily Schechter @ Enigma 2017.

Prerequisite: The right platform security features must be available:
○ HTTPS; the Secure attribute on cookies
○ HTTP Strict Transport Security (HSTS) set via a header and preload list
○ 'upgrade-insecure-requests' in CSP3
○ The __Secure- cookie prefix, cookie eviction rules
○ Browser blocking of mixed content

Ecosystem support:
○ LetsEncrypt as a free Certificate Authority
○ HTTPS encryption on the web Transparency Report, outreach
○ Browser UI work: "Not secure" for HTTP pages
○ Certificate Transparency

<plain>

https://www.usenix.org/conference/enigma2017/conference-program/presentation/schechter
https://transparencyreport.google.com/https/overview?hl=en
https://www.blog.google/products/chrome/milestone-chrome-security-marking-http-not-secure/

% of pages loaded over HTTPS in Chrome by platform<plain>

Fixes: Mixing code and data

Prerequisite: Implement powerful features to protect from injections.
Server-side injections: Require a cryptographic CSP3 nonce/hash for every <script>

Client-side injections: Make the DOM API safe by default with Trusted Types

Complement this with Origin Policy for origin-wide enforcement.

Content-Security-Policy: script-src 'nonce-random123'

<script nonce="random123">alert('this is fine!')</script>
<script>alert('This script is missing a nonce')</script>

Content-Security-Policy: trusted-types myPolicy

const SanitizingPolicy = trustedTypes.createPolicy('myPolicy', {
 createHTML(s: string) => myCustomSanitizer(s) });
el.innerHTML = SanitizingPolicy.createHTML(foo); // Needs TrustedHTML

https://csp.withgoogle.com
https://bit.ly/trusted-types
https://wicg.github.io/origin-policy/

Prerequisite: Implement powerful general isolation features.

Allow applications to reject untrusted cross-site requests

- Annotate requests with source information using Fetch Metadata Request Headers

- Adopt SameSite cookies and the Cross-Origin-Resource-Policy

Allow windows to break references from cross-origin websites

Fixes: Unrestricted attack surface

Sec-Fetch-Site Sec-Fetch-Mode

Cross-Origin-Opener-Policy: same-origin

Sec-Fetch-User

https://w3c.github.io/webappsec-fetch-metadata/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Cross-Origin_Resource_Policy_(CORP)

Reject cross-origin requests to protect from CSRF, XSSI & other bugs
def allow_request(req):
 # Allow requests from browsers which don't send Fetch Metadata
 if not req['sec-fetch-site']:
 return True

 # Allow same-site and browser-initiated requests
 if req['sec-fetch-site'] in ('same-origin', 'same-site', 'none'):
 return True

 # Allow simple top-level navigations from anywhere
 if req['sec-fetch-mode'] == 'navigate' and req.method == 'GET':
 return True

 return False

Allowing developers to write safe applications

1. Provide security mechanisms to address injections and add isolation
… and ship them in all modern browsers, tomorrow.

2. Help developers adopt them
- Write documentation and ship supporting features (Origin Policy)
- Integrate with browser developer tools and HTTP header checkers

3. Start thinking about the path to enable them by default
… or re-evaluate whether web-wide adoption should be the goal

Note: Browser vendors need to do work, which may make them unhappy.

If we do this, will the web be a safe application platform?

Part II
The quagmire of legacy web features

Problem #1

The browser-enforced boundaries between
web applications are fuzzy and imperfect.

A classic example: History detection

The problem: Sites can learn about all URLs visited by users, at high speed.
The fix (David Baron @ Mozilla):

Make getComputedStyle() lie about the style of the link, limit CSS
properties in :visited styles to those which don't affect layout, make
CSS selectors treat all links as unvisited.

a:visited { color: red; }

a:link { color: blue}

https://bugzilla.mozilla.org/show_bug.cgi?id=57351
https://dbaron.org/mozilla/visited-privacy

A classic example: History detection

● Timing attacks to detect color changes of a visited link:
○ #252165: Visited links can be detected via redraw timing
○ #835590: Complicated CSS effects and :visited selector

leak browser history through paint timing
● User interaction attacks
○ Weinberg et al: I still know what you visited last summer
○ Michal Zalewski's "Asteroids" game

● Other quirky side channels
○ Screen color detected via the ambient light sensor

https://bugs.chromium.org/p/chromium/issues/detail?id=252165
https://bugs.chromium.org/p/chromium/issues/detail?id=835590
https://ieeexplore.ieee.org/abstract/document/5958027
http://lcamtuf.coredump.cx/yahh/
https://arturjanc.com/ls/

A classic example: Cache detection

Edward Felten, Michael A. Schneider: Timing Attacks on Web Privacy:
Use timing to detect resources in the cache, leaking browsing history.

Since then:

● More accurate cache probing techniques
○ More accurate timing APIs: window.performance.now()
○ Tricks: window.stop(), abortable fetch, clearing a URL from the cache

● More damaging attacks
○ XS-Search based on the presence of a cacheable resource:
■ https://victim.example/search?q=foo has
■ https://victim.example/search?q=bar doesn't have the image

http://sip.cs.princeton.edu/pub/webtiming.pdf
https://victim.example/search?q=foo
https://victim.example/search?q=foo

Example: Connection exhaustion attacks

Stephen Roettger:
Leak cross-window request timing by exhausting connection pool

Attack:
● Establish g_max_sockets_per_pool connections to attacker's site
● Close one connection and navigate to https://victim.example

○ All fetches from the victim window happen via a single connection
● Make repeated requests to attacker's site.

○ Timing of requests reveals the timings of fetches in victim's window

Result: Timing attacks without making direct requests to the victim.

https://bugs.chromium.org/p/chromium/issues/detail?id=843157
https://victim.example

Example: Requests to local networks

Any website can make requests to services running on localhost and
local networks: 192.168.0.0/16, 172.16.0.0/12, 10.0.0.0/8

<form method="POST" action="http://10.1.1.1/..."></form>

… and often get full script execution by using DNS rebinding.

Attacks:
- Reconnaissance on user's local network by using the browser as a proxy
- Exploiting vulnerabilities

- CSRF bugs on routers, printers and IoT devices
- Application servers exposed on localhost not expecting network traffic

Problem #2

We've accumulated many counter-intuitive
features and APIs which cause problems.

Deprecate & remove web anti-patterns

A laundry list of terribleness accumulated over the years:

document.domain, MIME type sniffing, Referrer leakage, DOM
clobbering, Public Suffix List, javascript: URIs, insecure transports (ftp://),
file:// URI handling, (?) fingerprinting, ... , … , ...

Similarly to Moar TLS, follow examples of successful Chrome efforts:
- Flash deprecation
- Deprecating powerful features on insecure origins

https://www.chromium.org/flash-roadmap
https://www.chromium.org/Home/chromium-security/deprecating-powerful-features-on-insecure-origins

Fixing our past transgressions

1. Clamp down on global state to prevent information leaks
- Remove :visited (or make it same-origin)
- Add browser cache double-keying

… and prevent network-level attacks with CORS and RFC1918

2. Remove unsafe legacy APIs and browser behaviors

Note: This requires change. Change makes people unhappy.

https://wicg.github.io/cors-rfc1918/

Part III
The dangerous land of new web APIs

The Problem

Any new API in the web platform changes
the risk profile of all existing applications.

Example: HEIST

Mathy Vanhoef and Tom Van Goethem: HEIST: HTTP Encrypted Information
can be Stolen through TCP-windows

Feature Δ: Fetch API resolves a Promise when 1st byte of response arrives.
Security Δ: The attacker can reliably determine if a response fits in a single
TCP window by comparing Promise resolution to resource onload time.

Consequence: For responses with any user-controlled parts attacker can
determine the size, allowing fully remote BREACH attacks to extract
arbitrary secrets from the response.

https://www.blackhat.com/docs/us-16/materials/us-16-VanGoethem-HEIST-HTTP-Encrypted-Information-Can-Be-Stolen-Through-TCP-Windows-wp.pdf
https://www.blackhat.com/docs/us-16/materials/us-16-VanGoethem-HEIST-HTTP-Encrypted-Information-Can-Be-Stolen-Through-TCP-Windows-wp.pdf

Example: Spectre / Transient execution attacks

Paul Kocher, Jann Horn et al: Spectre Attacks: Exploiting Speculative Execution
Mark Seaborn: Multi-threading helps cache-based side channel attacks
Michael Schwarz et al: Fantastic Timers and Where to Find Them

Feature Δ: SharedArrayBuffer: arrays shared across threads, with atomicity.
Security Δ: Using a counting thread in a Web Worker allows the creation of a
nanosecond-level timer, more accurate than explicit web timing APIs.

Consequence: Nanosecond-level timers allow practical exploitation of branch
mispredictions on many CPUs, enabling the leaking of data from the process
address space, revealing ~arbitrary cross-origin data.

https://spectreattack.com/spectre.pdf
https://github.com/tc39/ecmascript_sharedmem/issues/1
https://gruss.cc/files/fantastictimers.pdf

Example: "scroll-to-selector" proposal

Current behavior: https://victim/#foo scrolls to

Feature Δ: Allow the URL fragment to also scroll to an arbitrary CSS selector:
https://victim/#body>a[href^="https://"]

Security Δ: Attacker can force a scroll based on arbitrary HTML attributes.

Consequence: An attacker who controls an iframe on the target page can leak
secrets from the DOM (e.g. CSRF tokens) by using sibling selectors and
IntersectionObserver to detect if the iframe scrolled into view:

https://victim/#input[value="secret"] ~ iframe

<div id="foo">

Mitigating our inevitable future mistakes

1. Review new web platform APIs
… and help browser developers design them safely

2. Create new restrictive modes which protect non-cooperating apps from
the misuse of powerful / low-level APIs by potentially malicious sites:
- Require Cross-Origin-Embedder-Policy and Cross-Origin-Opener-Policy to

unlock new APIs, e.g. threaded access to SharedArrayBuffer.

Note: This slows down features. Slowing down features makes people unhappy.

https://mikewest.github.io/corpp/
https://gist.github.com/annevk/6f2dd8c79c77123f39797f6bdac43f3e
https://docs.google.com/document/d/1zDlfvfTJ_9e8Jdc8ehuV4zMEu9ySMCiTGMS9y0GU92k/edit

It's simple. We need to:

… implement powerful new security features

… remove bad old legacy features

… review and contain new platform features

